A 60-year-old male presented with pain in left side of abdomen for several months. Physical examination revealed an abdominal mass in left hypochondrium. Basic laboratory investigations were non contributory. MRI scan of the abdomen showed a 21x18x14 cm solid and cystic mass lesion in relation to the body and tail of pancreas.

CT guided FNAC of pancreatic mass yielded low cellularity consisting of few round to oval atypical cells with eccentric nuclei and moderate amount of cytoplasm. The cytology was suggestive of neoplastic pathology however the definite typing was not possible. Abdominal laparoscopy was carried out which revealed a large solid and cystic mass involving body and tail of pancreas. The biopsy on histopathology examination showed a tumour composed of sheets of round to epithelioid cells with hyalinised stroma and intervening blood vessels. The tumour cells showed mild pleomorphism, oval to mildly irregular nuclei and scant to moderate amount of eosinophilic to vacuolated cytoplasm. No tumour necrosis was seen however the mitotic count was around 1/10HPF [Table/Fig-1,2]. Immunohistochemistry staining revealed diffuse cytoplasmic positivity for CD117 (c-kit) [Table/Fig-3], CD34 and variable positivity for vimentin and focal positivity for SMA. The cells were completely negative for S-100, neuron specific enolase, chromogranin A, CD99 and synaptophysin. The morphological and immunohistochemical findings were favouring epithelioid subtype of GIST. Hence, the diagnosis of pancreatic GIST with high risk of malignancy was made. Subsequently, C-kit mutation analysis was done which revealed a deletion mutation of exon 11 resulting in loss of aminoacid at positions 554 to 559. Wild or normal gene sequence was observed in exon 9 of c-kit gene. Patient was put on imatinib therapy. Follow up MRI after 3 months showed metastatic deposits in lung and patient died within 9 months of initial diagnosis.

DISCUSSION
It is presumed that GIST's originate from the interstitial cells of cajal and express the C-kit receptor tyrosine kinase (CD117) [1]. Yamura et al., have shown the presence of c-KIT positive interstitial cells surrounding the intercalated ducts and acinus in the pancreas [2]. These cells named as pancreatic interstitial cajal like cells are now called as telocytes.

EGIST originate from the soft tissues of the abdomen and retroperitoneum such as the omentum, mesentery, retroperitoneum and gall bladder [3]. EGIST arising in the pancreas are rare neoplasm (pEGIST) and only 19 cases have been reported in the literature [4]. The age range was 38 to 84 yrs and most of the patients presented with gastric pain and abdominal mass. The index case was 60-years-old and had similar clinical presentation. The majority (42.1%) of pEGIST occurred in the head of the pancreas, 26.3% in tail, 21.1% in both body and tail and 5.3% in the uncinate process [4]. In the current case, tumour was detected in body and tail of the pancreas. The tumour ranged from 2.4cm to 35 cm in size in various studies and in present case, the maximum tumour size was 21cm. The immunohistochemical marker for GIST is the expression of the C-kit receptor tyrosine kinase (CD117 antigen). Approximately 5% of GIIST are C-Kit negative and harbour PDGFR –alpha mutation [1]. In addition, 40 to 70 % GIIST’s show positivity for CD34 and variable positivity for other mesenchymal markers such vimentin, myoid (smooth muscle actin and desmin) and neural (S100) marker.
According to Padi et al., 84.2% cases of pEGIST showed strong diffuse cytoplasmic positivity for CD117/c-KIT and 73.7% cases were positive for CD34 [4]. In present case, the tumour showed diffuse positivity for both CD117 and CD34. Recently DOG-1 and protein kinase C theta are said to be the most specific biomarkers of GIST/EGIST. Babu et al., recently described a case of DOG-1 positive pEGIST [5].

The c-kit mutations responsible for GIST carcinogenesis are exon 11 (most common), exon 9 (second most common), exon 13, 17 and PDGFR- alpha mutation in exon 12, 14, 18 [4]. The molecular biology of pEGIST has been documented only in two cases [6,7]. Daum et al., showed deletion of six base pairs in exon 11 of c-kit, causing loss of Glu at position 556 and Trp at position 557 of the KIT protein [6]. Saif Wasif et al., did not find c-kit mutation involving exon 11, 13, 17 and 18; however they reported DNA polymorphism of L862L in exon 18 of C-kit gene [7]. In the present case there was deletion mutation in exon 11, resulting in loss of aminoacid at position 554 to 559. Wild or normal gene sequence was observed in exon 9 of c-kit gene.

Differential diagnosis between EGIST and other mesenchymal tumour is of crucial importance as the target therapy Imatinib (Gleevec) which is an inhibitor of the tyrosine kinase activity of c-kit has revolutionized the treatment of this disease. Ursula et al., reported solid hamartoma of the pancreas showing disordered arrangement of pancreatic acini, intralobular and interlobular ducts embedded in a fibrous stroma with enlongated spindle cells. Immunohistochemically CD117 and CD34 expression was seen in fibrotic stroma [8]. C-KIT mutation can helps in differentiating these hamartoma of the pancreas from the primary GIST of the pancreas.

Hou ying-yong et al., studied sequence and expression of c-kit gene in pancreatic acini, intralobular and interlobular ducts reported solid hamartoma of the pancreas from the primary GIST of the pancreas. Hou ying-yong et al., studied sequence and expression of c-kit gene in pancreatic acini, intralobular and interlobular ducts reported solid hamartoma of the pancreas from the primary GIST of the pancreas. Immunohistochemically CD117 and CD34 expression was seen in fibrotic stroma [8]. C-KIT mutation can help in differentiating these hamartoma of the pancreas from the primary GIST of the pancreas.

Hou ying-yong et al., studied sequence and expression of c-kit gene in pancreatic acini, intralobular and interlobular ducts reported solid hamartoma of the pancreas from the primary GIST of the pancreas. Immunohistochemically CD117 and CD34 expression was seen in fibrotic stroma [8]. C-KIT mutation can help in differentiating these hamartoma of the pancreas from the primary GIST of the pancreas.

According to Padhi et al., 84.2% cases of pEGIST showed strong diffuse cytoplasmic positivity for CD117/c-KIT and 73.7% cases were positive for CD34 [4]. In present case, the tumour showed diffuse positivity for both CD117 and CD34. Recently DOG-1 and protein kinase C theta are said to be the most specific biomarkers of GIST/EGIST. Babu et al., recently described a case of DOG-1 positive pEGIST [5].

The c-kit mutations responsible for GIST carcinogenesis are exon 11 (most common), exon 9 (second most common), exon 13, 17 and PDGFR- alpha mutation in exon 12, 14, 18 [4]. The molecular biology of pEGIST has been documented only in two cases [6,7]. Daum et al., showed deletion of six base pairs in exon 11 of c-kit, causing loss of Glu at position 556 and Trp at position 557 of the KIT protein [6]. Saif Wasif et al., did not find c-kit mutation involving exon 11, 13, 17 and 18; however they reported DNA polymorphism of L862L in exon 18 of C-kit gene [7]. In the present case there was deletion mutation in exon 11, resulting in loss of aminoacid at position 554 to 559. Wild or normal gene sequence was observed in exon 9 of c-kit gene.

Differential diagnosis between EGIST and other mesenchymal tumour is of crucial importance as the target therapy Imatinib (Gleevec) which is an inhibitor of the tyrosine kinase activity of c-kit has revolutionized the treatment of this disease. Ursula et al., reported solid hamartoma of the pancreas showing disordered arrangement of pancreatic acini, intralobular and interlobular ducts embedded in a fibrous stroma with enlongated spindle cells. Immunohistochemically CD117 and CD34 expression was seen in fibrotic stroma [8]. C-KIT mutation can helps in differentiating these hamartoma of the pancreas from the primary GIST of the pancreas.

Hou ying-yong et al., studied sequence and expression of c-kit gene in 52 cases of GIST’s including benign, borderline and malignant variants from different sites [9]. Mutation of exon 11 were found in 56% of malignant GIST’s, mutation of exon 11 of the c-kit gene were revealed in 10.5% of borderline GIST’s and no mutation was found in benign tumours. They concluded that C-kit mutation occur preferentially in malignant GIST’s and might be a clinically useful adjunct marker in the evaluation of GIST’s and can help to differentiate GIST’s from the other mesenchymal tumours [9].

CONCLUSION
We presented a rare case of primary pancreatic EGIST with documentation of mutation of C-Kit gene. Further studies need to be done to know whether the c-kit gene mutation can indicate bad prognosis of malignant GISTs or not.

REFERENCES